Definition of Ubiquitination Modulator COP1 as a Novel Therapeutic Target in Human Hepatocellular Carcinoma

Yun-Han Lee, Jesper B. Andersen, Ho-Taek Song, et al.

Cancer Res 2010;70:8264-8269. Published OnlineFirst October 19, 2010.

Updated Version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-0749

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/10/18/0008-5472.CAN-10-0749.DC1.html

Cited Articles
This article cites 18 articles, 3 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/21/8264.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
Definition of Ubiquitination Modulator COP1 as a Novel Therapeutic Target in Human Hepatocellular Carcinoma

Yun-Han Lee1, Jesper B. Andersen1, Ho-Taek Song3,5, Adam D. Judge4, Daekwan Seo3, Tsuyoshi Ishikawa1, Jens U. Marquardt1, Mitsuteru Kitade1, Marian E. Durkin1, Chiara Raggi1, Hyun Goo Woo1,5, Elizabeth A. Conner1, Itzhak Avital2, Ian MacLachlan4, Valentina M. Factor1, and Snorri S. Thorgeirsson1

Abstract

The development of targeted therapeutics for hepatocellular carcinoma (HCC) remains a major challenge. The ubiquitination modulator COP1 regulates p53 activity by ubiquitination and it is frequently overexpressed in human HCC. In this study, we tested the hypothesis that COP1 blockade by short interfering RNA (siRNA)-mediated inhibition could affect the course of HCC progression. The COP1 isoform COP1-1 was selected as the most effective target for siRNAs in terms of growth inhibition and apoptotic induction in several HCC cell lines. Growth inhibition occurred in HCC cells that retained wild-type p53 or expressed mutant p53 (Y220C or R249S), whereas p53-null Hep3B cells were resistant. Microarray expression analysis revealed that the antiproliferative effects of COP1 blockade were driven by a common subset of molecular alterations including a p53-associated functional network. In an orthotopic mouse xenograft model of HCC, systemic delivery of a modified COP1 siRNA by stable nucleic acid–lipid particles suppressed neoplastic growth in liver without unwanted immune responses. Our findings offer a first proof of principle that COP1 can be a promising target for systemic therapy of HCC. Cancer Res; 70(21); 8264–9. ©2010 AACR.
of control siRNA (negative control no. 1) or COP1-specific siRNA complexed with Lipofectamine 2000 (Invitrogen). 2′OMe-modified siRNA COP1 4/7 and β-gal478 were synthesized and annealed by Integrated DNA Technologies, and formulated into stable nucleic acid–lipid particles (SNALP) suitable for in vivo delivery to the liver as described (12–14). A list of siRNAs is provided in Supplementary Table S1. Vybrant MTT Cell Proliferation Assay (Invitrogen) and ApoStrand ELISA Apoptosis Detection Kit (Biomol International) were used to evaluate the biological effects of siRNA treatment. Quantitative reverse transcription PCR and immunoblotting were performed using standard methods (Supplementary Materials and Methods).

Cytokine ELISA
The production of cytokines in culture supernatant of mouse Flt3L dendrocytes or in mouse serum was measured by sandwich ELISA kits for IFN-α, IFN-β (PBL Biomedical Laboratories), and interleukin-6 (BD Biosciences).

Systemic administration of SNALP-formulated siRNA in vivo
Animals were housed in an Association for Assessment and Accreditation of Laboratory Animal Care International facility and cared for in accordance with the guidelines from the Animal Care and Use Committee at the National Cancer Institute, NIH. Huh7-luc + (5 × 105) or HepG2-luc + (7 × 105) cells were injected into the splenic pulp of 6-week-old male severe combined immunodeficiency/Beige mice (Charles River). SNALP-formulated siRNAs (2 mg/kg) were injected into the lateral tail vein four times with a 3-day interval. Tumor growth was monitored by bioluminescence imaging for 4 weeks with 3- to 4-day intervals using an IVIS Imaging System (Supplementary Materials and Methods).

Microarray experiments
Microarray was performed on human Ref-8v3 microarrays (Illumina) as recommended by the manufacturer. RNAs were isolated 48 hours after the transfection of negative control siRNA or COP1-1 siRNA to Huh7, HepG2, and Hep3B cells. Detailed procedures and pathway analysis are described in Supplementary Materials and Methods. The complete microarray data have been submitted to Gene Expression Omnibus database with accession number GSE21955 (http://www.ncbi.nlm.nih.gov/geo).

Results and Discussion
Silencing of COP1 inhibits proliferation and induces apoptosis of human HCC cells
To examine the biological effects of COP1 knockdown, two HCC cell lines with wild-type p53 (HepG2) and mutant...
p53 (Huh7: Y220C) were treated with three COP1-specific (COP1-1, COP1-2, and COP1-3) siRNAs for 4 days and analyzed for growth inhibition. This screen identified COP1-1 as the most potent siRNA. COP1 knockdown caused a strong reduction in growth rate in both cell lines which ranged between 84% and 88%, and was paralleled by a similar degree of target mRNA silencing (Fig. 1A; Supplementary Fig. S1A). The Western blot experiments confirmed that the protein levels of COP1 were also reduced in COP1 siRNA-treated HCC cell lines (Supplementary Fig. S1B and C).

Analysis of cell cycle progression by fluorescence-activated cell sorting showed that COP1-1 siRNA increased the G0-G1 population while decreasing the fraction of cells in G2-M phase in both Huh7 and HepG2 cells, consistent with a cell cycle arrest in G1 phase (Fig. 1B). Furthermore, COP1 treatment caused a strong induction of apoptotic cell death (Fig. 1C). Significantly, COP1 depletion was similarly effective in suppressing the growth of two additional HCC cell lines, Huh1 and PLC/PRF/5, expressing wild-type and mutant p53 (R249S), respectively, whereas p53-null Hep3B cells were significantly more resistant (Fig. 1D).

Figure 2. Changes in gene expression following COP1 knockdown. A and B, heatmap overview of genes upregulated and downregulated at 48 h after COP1 inactivation in Huh7 (A) and HepG2 (B) cells. The means of the intensity log ratios from COP1-1 siRNA–treated cells were calculated relative to the negative control siRNA-treated cells (P < 0.01 by Bootstrap t test). Expression targets of p53 (right). C, fold changes of genes commonly dysregulated and functionally associated with p53. D, Western blot analysis of GLIPR1 and phosphorylated JNK in Huh7, HepG2, and Hep3B cells that were untreated or treated with the indicated siRNA for 48 h. Actin was included as a loading control.
Microarray analysis of global gene expression changes in COP1 siRNA-treated HCC cell lines

To understand the mechanism of action of COP1 in HCC cells, we performed expression profile analysis. For this purpose, three HCC cell lines with different genetic status of p53 were treated with either negative control siRNA or COP1-1 siRNA for 48 hours and subjected to Illumina microarray analysis. The number of differentially expressed genes which displayed a more than 2-fold change was 522 (179 upregulated and 343 downregulated genes) and 462 (167 upregulated and 295 downregulated genes) in COP1 siRNA-treated HepG2 and Huh7 cells, respectively. Consistent with COP1 function as a negative regulator of p53 protein (11), several genes affected by COP1 inactivation were known/putative targets of p53. As expected, p53 was among the predominant pathways affected by differentially regulated genes following COP1 knockdown in HepG2 and Huh7 cells (Fig. 2A and B). In HepG2 cells, COP1 silencing increased the expression of apoptosis-related (NOS2A and BIK) and antiproliferative (BTG2, GLIPR1, and FHL2) genes, which was paralleled by the downregulation of key molecules involved in a wide range of cellular responses to hypoxia (HIF1A), growth (IGF1R, ABL1, POLK), and differentiation (HDAC5). Consistent with phenotypic changes, COP1-depleted Huh7 cells also displayed changes in a p53-associated group of genes functionally involved in the regulation of apoptosis, growth, and differentiation including CASP6, GLIPR1, FHL2, GADD45A, ABL1, BCL6, and GDF15 genes. However, COP1 inactivation increased p53 protein levels only in HepG2 cells with wild-type p53 and did not affect the p53 abundance in Huh7 cells which carry Y220C mutation increasing p53 protein stability (Supplementary Fig. S1B and C; ref. 15). At present, knowledge on the molecular basis for mutant p53 gain of function is limited (16), and we cannot exclude that COP1 inactivation does not activate the classical p53 pathway in Huh7 cells or has an indirect effect on p53 pathway through intermediate molecules.

To further explore the molecular mechanisms of COP1 response, we have generated a common COP1 knockdown signature consisting of 78 deregulated genes (Supplementary Table S2). Using the Ingenuity Pathway Analysis software, we then identified common statistically significant pathway networks (score >19) which were strongly associated with NF-κB, HNF4α, p53, and tumor necrosis factor, suggesting that molecular alterations in diverse oncogenic pathways may cooperatively result in the growth inhibition of HCC cells in response to COP1 inactivation (Supplementary Fig. S2; Supplementary Table S3). Given the statistical and biological relevance to the study, we focused on the p53 network (no. 3). Our results showed that despite a limited gene to gene overlap, the expressions of seven genes, known to be associated with p53 pathway, such as FOXO3, NEDD8, TAPI, RFWD2 (COP1), FHL2, ABL1, and GLIPR1, were commonly deregulated (Fig. 2C). Knockdown of COP1 in p53-null Hep3B cells did not affect any of these genes, except for the RFWD2 (COP1) target gene (Fig. 2C). The p53-null cells were also significantly more resistant to growth inhibition caused by COP1 silencing, suggesting that the COP1 knockdown phenotype is associated with p53 function. In particular, our microarray analysis identified a common upregulation of glioma pathogenesis-related protein 1 (GLIPR1; Fig. 2C and D). GLIPR1 is a novel p53 target gene shown to exert tumor suppressor activities through upregulation of ROS-JNK pathway in p53+/+ and p53−/− genetic background (17). Indeed, an increase in GLIPR1 protein and JNK phosphorylation were found only in Huh7 and HepG2 but not in p53-null Hep3B cells, suggesting that activation of the GLIPR1/JNK pathway might be a common mechanism of growth inhibition and apoptotic induction engaged by COP1 inactivation.

Systemic delivery of COP1 siRNA by SNALP suppresses liver tumor growth in vivo

Ultimately, we confirmed the therapeutic potential of COP1 in vivo using two human xenograft models. First, statistically significant inhibition of tumor growth was observed in a subcutaneous model of transplantation in nude/athymic mice (Supplementary Fig. S3). Direct injections of native...
COP1-1 siRNA into the tumors established from Huh7 cells caused a dose-dependent reduction in tumor mass. As a final validation of antitumor efficacy of COP1 in vivo, we established an orthotopic xenograft model in severe combined immunodeficiency/Beige mice using luciferase-expressing HCC reporter cell lines and a SNALP formulation optimized for delivery of siRNA into liver. Recently, we have described the development of SNALP as an effective systemic delivery vehicle for targeting siRNA to murine and primate liver as well as solid tumors and have shown robust therapeutic silencing of endogenous hepatocyte, tumor, and viral gene transcripts in the absence of any measurable immune response (12–14). To prevent immune activation by the formulated siRNA, the native COP1-1 and nontargeting control β-gal478 sequences were modified by selective incorporation of 2′-O-methyl (2′OMe) uridine or guanosine nucleosides into siRNA duplex (18). COP1 4/7 was selected as the most effective 2′OMe-modified siRNA for growth inhibition (>70%) and target mRNA silencing (>90%; Fig. 3A and B). The modified COP1 4/7 caused minimal activation of cytokines, such as IFN-α and interleukin-6 (Fig. 3C). Additionally, systemic injection of SNALP-COP1 4/7 did not increase the production of IFN-β in serum collected 48 hours after delivery (Fig. 3D). Four i.v. injections of SNALP-COP1 4/7 significantly suppressed the growth of Huh7-luc− or HepG2-luc−-derived tumors in liver as compared with a control group receiving SNALP-β-gal478 based on bioluminescence imaging and microscopic examination (Fig. 4). In both cases, a dose of 2 mg/kg showed a potent and long-lasting effect resulting in a more than 12- and 9-fold decrease in tumor growth, respectively, 10 days after the last treatment and thereby exceeding the National Cancer Institute criteria for promising therapeutic compounds. In conclusion, this is the first demonstration that COP1 is an important regulator of HCC growth and survival, and may represent a promising molecular target for systemic therapy of a wide spectrum of human HCC.

Figure 4. Systemic delivery of COP1 4/7siRNA by SNALP suppresses human HCC growth in orthotopic xenograft model. Severe combined immunodeficiency/Beige mice received Huh7-luc+ (A) and HepG2-luc+ (B) cells through intrasplenic injection resulting in tumorous growth in the liver. Mice were randomly assigned either to control (SNALP-β-gal478) or treatment (SNALP-COP1 4/7) group based on the intensity of bioluminescence before initiation of COP1 4/7siRNA therapy at day 8 for Huh7 and day 11 for HepG2. SNALP-β-gal478 and SNALP-COP1 4/7 (2 mg/kg) were injected into the tail vein at the times indicated. Representative in vivo bioluminescence imaging of Huh7 and HepG2 xenografts (left). Images were set at the same pseudocolor scale to show the relative bioluminescence changes over time. Quantification of bioluminescence (middle). The total flux is plotted as photon/s (*, *P* < 0.05 by Student’s t test; **, **P* < 0.01 by Mann-Whitney U test; n = 8 versus n = 5; ***, P < 0.01 by Mann-Whitney U test; n = 8 versus n = 6). Histopathologic evaluation (right). Representative photos of gross liver morphology at 28 d after transplantation are shown. H&E staining; original magnification, ×50.
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Joseph A. Frank for helpful discussions and Jeonghoon Heo for assistance during in vivo studies.

Grant Support

Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 03/08/2010; revised 07/13/2010; accepted 08/02/2010; published OnlineFirst 10/19/2010.

References